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Behavioural analysis inside the
Morris Water Maze



orris Water Maze (MWM)

It was designed by Richard
Morris in 1981.

It is one of the most widely
used tasks in behavioural
neuroscience. More than 2000
publications within the decade v
1990-2001 [1].

It is used to study the
psychological processes and
neural mechanisms of spatial
learning and memory.

[1] D'Hooge, Rudi, and Peter P. De Deyn. “Applications of the Morris water maze in the study of learning and memory.” Brain
research reviews 36.1 (2001): 60-90.
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Data Analysis in the MWM
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Data Analysis in the MWM

Performance Measurements Full Trajectories Classification
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Performance measurements: Insufficient to capture all the different
animal behaviours that are present during the experiments [1].

[1] Dalm, Sergiu, et al. “Quantification of swim patterns in the Morris water maze.” Behavior Research Methods, Instruments,
& Computers 32.1 (2000): 134-139.
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Data Analysis in the MWM

Performance Measurements Full Trajectories Classification
Focuse rch
O

/O U

Performance measurements: Insufficient to capture all the different
animal behaviours that are present during the experiments [1].

Full trajectories classification: Animals employ several behaviours

during each trial in order to find the platform and by assigning whole
animal trajectories to single behavioural classes results in the loss of

important information [2].

[1] Dalm, Sergiu, et al. “Quantification of swim patterns in the Morris water maze.” Behavior Research Methods, Instruments,
& Computers 32.1 (2000): 134-139.

[2] Gehring, Tiago V., et al. “Detailed classification of swimming paths in the Morris Water Maze: multiple strategies within
one trial.” Scientific reports 5 (2015): 14562.
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Data Analysis in the MWM

Detailed Trajectories Classification

1.Thigmitaxis 5.ChainingR. - = = -
2Incursion = = = - 6.Self-orienting
3.Scanning - 7.5canning Sur, rssseseeees '
4.Focused S, emrssnnaanns 8.Target Scan.

[1] Gehring, Tiago V., et al. “Detailed classification of swimming paths in the Morris Water Maze: multiple strategies within
one trial.” Scientific reports 5 (2015): 14562.
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Procedure of Gehring et al.

Data

Avgoustinos Vouros

%

Segmentation

seg 2
seg 1

Features

i, Classification

Behavioural pattern recognition of animal pat



Procedure of Gehring et al.
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Procedure of Gehring et al.

Mapping clusters to classes
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Procedure of Gehring et al.

Mapping segments back to the original trajectories

interval
LR

trajectory
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Procedure of Gehring et al.

Mapping segments back to the original trajectories
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Procedure of Gehring et al.

Mapping segments back to the original trajectories
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Procedure of Gehring et al.

How to find K?
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Procedure of Gehring et al.

How to find K?
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Procedure of Gehring et al.

Segmentation tuning.

Labelling.

Classification tuning.

Final conclusions are based on different segmentation tunings
combined together.
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Procedure of Vouros

How to find K?
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Procedure of Vouros et al.

Classification boosting with majority voting

Classifiers Pool

Feature Number of
Clusters =i

Computation

Trajectories
Segmentation

i<=100?

Partial
Labelling Gehring etal.
Classification

)

10-fold Cross
Validation

L+1=1

Validation Error < 25%?

Save
Classifier

Avgoustinos Vouros Behavioural pattern recognition of animal pat



Procedure of Vouros et al.

Classification boosting with majority voting
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Procedure of Vouros et al.

Mapping segments back to the original trajectories:
segmentation independent, T and o proportional to R
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Procedure of Vouros et al.

Validation and Confidence
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EPFL - Stress vs Control Groups

Performance Measurements & Full Trajectory Analysis ‘
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Results: EPFL - Stress vs Control Groups

Our Method of: Trajectory Segmentation Analysis
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Results: EPFL - Stress vs Control Groups

Ensemble Result
(Friedman test p-values per strategy and transitions, a = 0.05)
Segmentation T IC SC FS CR SO SS ST tr
3R, 0.7 0.008 | 0.011 | 0.450 | 0.205 | 0.156 | 0.960 | 0.271 | 0.571 | 0.035
2.5R, 0.7 0.005 | 0.013 | 0.157 | 0.278 | 0.003 | 0.638 | 0.190 | 0.345 | 0.019
2.5R, 0.9 0.004 | 0.009 | 0.501 | 0.444 | 0.007 | 0.718 | 0.229 | 0.827 | 0.037
2R, 0.7 0.004 | 0.005 | 0.156 | 0.821 | 0.008 | 0.749 | 0.436 | 0.389 | 0.038
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Results: EPFL - Stress vs Control Groups
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Further validation: EPFL - Stress vs Control Groups

What about interval length and o7
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Further validation: EPFL - Stress vs Control Groups

Diversity [1-2], and strength [3-4] of the classifiers?

Generate

Segmentation 3| Classifiers
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[1] Gerecke, Uwe, Noel E. Sharkey, and Amanda JC Sharkey. " Common evidence vectors for self-organized ensemble
localization.” Neurocomputing 55.3-4 (2003): 499-519.

[2] Schapire, Robert E. " The strength of weak learnability.” Machine learning 5.2 (1990): 197-227.

[3] Zhu, Mu. "Use of majority votes in statistical learning.” Wiley Interdisciplinary Reviews: Computational Statistics 7.6
(2015): 357-371.

[4] Ruta, Dymitr, and Bogdan Gabrys. " A theoretical analysis of the limits of majority voting errors for multiple classifier
systems.” Pattern Analysis and Applications 5.4 (2002): 333-350.
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Further validation: EPFL - Stress vs Control Groups

Diversity, and strength of the classifiers?

Avgoustinos Vouros

Segmentation | Segmentation | Segmentation | Segmentation
I I1 I1 IV
Numt‘)e‘r of generated I 73 01 64
Classifiers
Performance: Classifiers

Average Error (%) 16.8 17.5 13.9 18.0
[min-max | [5.4 24.9] [3.7 25.0] [1.8 21.5] [7.324.9]

~laccify o7,
Unclassified (%) )5 5 (3 37
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Agreement (%) 538.7 61.0 59.6 56.3

Performance: Ensemble(s)

Error (%) 0.0 0.2 0.0 0.0

e f [T
Unclassified (%) 0.0 0.0 0.0 01
Segments
Agreement (%) 834 82.6 823 80.0
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The RODA Software
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Further applications, requests and Q&A
J :"' nencki institute .( I)fl-
j/'-\( of experimental biology

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

e Niina Lapinlampi, University of Eastern Finland, A.l. Virtanen
Institute for Molecular Sciences, Finland.

e Gido Gravesteijn, CADASIL research group, Leiden University Medical
Center, Department of Clinical Genetics and Department of Human
Genetics, Leiden, The Netherlands.

e Richard Pinnell and Ulrich Hofmann Neuroelectronic Systems, Dept.
of Neurosurgery, University Medical Centre Freiburg, Freiburg,
Germany.

e Qazi Rahman, King's College London, Psychology Department,
Health Psychology Research Group, UK.

e Noam Joseph, Mote Marine Laboratory & Aquarium, Florida, USA
(now in Israel).
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Manuscript under peer-review by Scientific Reports

A generalised framework for detailed classification
of swimming paths inside the Morris Water Maze

Avgoustinos Vouros'-*, Tiago V. Gehring', Kinga Szydlowska?, Artur Janusz?, Zehai Tu!,
Mike Croucher!, Katarzyna Lukasiuk?, Witold Konopka?, Carmen Sandi, and Eleni
Vasilaki'+

'Department of Computer Science, The University of Sheffield, Sheffield, UK

2Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
“avouros1@sheffield.ac.uk

+e.vasilaki@sheffield.ac.uk
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RODA adaptation to other
experimental procedures



RODA adaptation to other experimental procedures
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RODA adaptation to other experimental procedures
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RODA adaptation to other experimental procedures

Trajectory
Lakelling Features
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RODA adaptation to other experimental procedures

Clustering
Data Clustering
K with
MPCK-Means
Generate
Labels% Constraints
Constraints

Initialize Metric
Clusters Learning
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RODA adaptation to other experimental procedures

Clustering
Data Clustering
with
MPCK-Means
G te
L%S% Co%nts
Con ints

Random
clusters L%
(42 as seed) 9
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RODA adaptation to other experimental procedures

Path features

.
Geometric
mi.nimum enclosing| minimum enclosing minimum enclosing
_e"'Pse ellipse /ellipse L
-~ xi,yi)
/7 / ~N
N N
\ \
N ~ /\
) I
— 1% = 4A , . . -
e=y\/1-% f=1-2% CV = (rig — riy)/riz LL=1¢
Eccentricity: path elongation. | Focus: path concentration Inner radius variation: Longest loop: self-intersecting
on an area. dispertion of points relative to | sub-segment of the path.
acircle.

Spatial ArenaSpecific

median(dy, ..., d,)
IQR(dy, ..., dy)

Distance to center: indication
if the animal spends more time|

next to the walls or the central
. parts of the arena.

d = \/(zp —70)* + (y£ — yo)*
Central displacement: identifies|
concentric paths with the arena.
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RODA adaptation to other experimental procedures

Overlapping segmentation

e Generates huge amount of data.
e Creates difficult to separate data.

e It cannot capture stationary points.
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RODA adaptation to other experimental procedures

Solutions
e Implementation of more path features.
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RODA adaptation to other experimental procedures

Solutions
e Implementation of more path features.

e A generic segmentation criterion which might be combined with the
overlapping segmentation (path sinuosity [1]).

[1] Benhamou, Simon. "How to reliably estimate the tortuosity of an animal’s path:: straightness, sinuosity, or fractal
dimension?.” Journal of theoretical biology 229.2 (2004): 209-220.
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RODA adaptation to other experimental procedures

Solutions
e Implementation of more path features.

e A generic segmentation criterion which might be combined with the
overlapping segmentation (path sinuosity [1]).

e Clustering:

e Initialize clusters deterministically based on data density
(DKMeans++ [2] €&9).

[1] Benhamou, Simon. "How to reliably estimate the tortuosity of an animal’s path:: straightness, sinuosity, or fractal

dimension?.” Journal of theoretical biology 229.2 (2004): 209-220.
[2] Nidheesh, N., KA Abdul Nazeer, and P. M. Ameer. "An enhanced deterministic K-Means clustering algorithm for cancer

subtype prediction from gene expression data.” Computers in biology and medicine 91 (2017): 213-221.
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RODA adaptation to other experimental procedures

Solutions
e Implementation of more path features.

e A generic segmentation criterion which might be combined with the
overlapping segmentation (path sinuosity [1]).

e Clustering:

e Initialize clusters deterministically based on data density
(DKMeans++ [2] €&9).

e Hierarchical clustering (Bisecting K-Means [3]).

[1] Benhamou, Simon. "How to reliably estimate the tortuosity of an animal’s path:: straightness, sinuosity, or fractal

dimension?.” Journal of theoretical biology 229.2 (2004): 209-220.
[2] Nidheesh, N., KA Abdul Nazeer, and P. M. Ameer. "An enhanced deterministic K-Means clustering algorithm for cancer

subtype prediction from gene expression data.” Computers in biology and medicine 91 (2017): 213-221.
[3] Steinbach, Michael, George Karypis, and Vipin Kumar. " A comparison of document clustering techniques.” KDD workshop

on text mining. Vol. 400. No. 1. 2000.
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RODA adaptation to other experimental procedures

Solutions
e Implementation of more path features.

e A generic segmentation criterion which might be combined with the
overlapping segmentation (path sinuosity [1]).

e Clustering:

e Initialize clusters deterministically based on data density
(DKMeans++ [2] €&9).

e Hierarchical clustering (Bisecting K-Means [3]).

e Feature weighting based on outliers detection and exclusion [4].

[1] Benhamou, Simon. "How to reliably estimate the tortuosity of an animal’s path:: straightness, sinuosity, or fractal
dimension?.” Journal of theoretical biology 229.2 (2004): 209-220.

[2] Nidheesh, N., KA Abdul Nazeer, and P. M. Ameer. "An enhanced deterministic K-Means clustering algorithm for cancer
subtype prediction from gene expression data.” Computers in biology and medicine 91 (2017): 213-221.

[3] Steinbach, Michael, George Karypis, and Vipin Kumar. " A comparison of document clustering techniques.” KDD workshop

on text mining. Vol. 400. No. 1. 2000.
[4] Brodinova, Sarka, et al. " Robust and sparse k-means clustering for high-dimensional data.” arXiv preprint arXiv:1709.10012

Avgoustinos Vouros Behavioural pattern recognition of animal pat



To be continued...

Thank you for your attention!

Any questions?
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Metric Pairwise-Constrained

K-Means (MPCK-Means

Bilenko, Mikhail, Sugato Basu, and Raymond J. Mooney. "Integrating constraints and metric learning in semi-supervised
clustering.” Proceedings of the twenty-first international conference on Machine learning. ACM, 2004.



The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Pairwise constraints

A. C A must-link B
B cannot-link C
B® K—

Cluster1  Cluster 2 Cluster 1  Cluster 2

Example: The COP-KMeans; constraints are never broken when updating
cluster assignments [1].

[1] Wagstaff, Kiri, et al. " Constrained k-means clustering with background knowledge.” ICML. Vol. 1. 2001.
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Metric learning

daa.32) = [xa — xalla = /(1 — x2) TAGa — x) (1)

e if A= then (1) corresponds to the Euclidean distance.

e if Ais diagonal matrix and not / then each axis or dimension is given
a weight (feature weighting).

e if Ais full matrix then new features are generated that are linear
combination of the original features [2].

[1] Xing, Eric P., et al. " Distance metric learning with application to clustering with side-information.” Advances in neural
information processing systems. 2003.

[2] Basu, Sugato, Mikhail Bilenko, and Raymond J. Mooney. " Comparing and unifying search-based and similarity-based
approaches to semi-supervised clustering.” Proceedings of the ICML-2003 workshop on the continuum from labeled to unlabeled
data in machine learning and data mining. 2003.

Avgoustinos Vouros Behavioural pattern recognition of animal pat 40 /54



The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Initialize cluster centroids

e Create A neighborhoods by using the transitive closure of the
MUST-LINK constraints.
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Initialize cluster centroids

e Create A neighborhoods by using the transitive closure of the
MUST-LINK constraints.

1 2
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Initialize cluster centroids

e Create A neighborhoods by using the transitive closure of the
MUST-LINK constraints.

1 2 1 2
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Initialize cluster centroids

e Create A neighborhoods by using the transitive closure of the
MUST-LINK constraints.

1 2 1 2 1 2
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Initialize cluster centroids

e Create A neighborhoods by using the transitive closure of the
MUST-LINK constraints.

1 2 1 2 1 2
4 3 4 3 4 3

> L= {(17 2)? (27 3)7 (3a 4)}
@ {(1,3),(2,4)}
@ {(1,4)}

Avgoustinos Vouros Behavioural pattern recognition of animal pat 41 /54



The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Initialize cluster centroids

e Create A neighborhoods by using the transitive closure of the
MUST-LINK constraints.

e Augment the MUST-LINK and CANNOT-LINK sets of constraints
with any additional constraints.

e Use the centers of the neighborhoods as centroids:
o if k = X initialize A\ centroids.

o if k > X initialize A centroids and the remaining kK — A centroids
at random using 42 as random seed.

o if k < A initialize k neighborhoods from X\ based on weighted
farthest-first traversal where the weights are the sizes of the
neighborhoods.

Avgoustinos Vouros Behavioural pattern recognition of animal pat



The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm
(Weighted) farthest-first traversal

Goal: find K points which are maximally separated from each other (in
terms of a weighted distance).

.‘ ° . neighborhood

x centroid

,O .. ’ ... e datapoint
[
o o9
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

(Weighted) farthest-first traversal

e Pick a neighborhood at random )\;

e Find the furthest neighborhood of A;.
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

(Weighted) farthest-first traversal

e Find the furthest neighborhood of A that is also the farthest from
the neighborhood ;.
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

(Weighted) farthest-first traversal

e Find the furthest neighborhood of A that is also the farthest from
the neighborhood ;.

e Since weights = size(\), the selected points are far apart and inside
large neighborhoods.
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Integrating constraints and metric learning

(N willa, — log(det(Ay))) (1)
x;€X
+ Y wyfu(x, )1 # 1] (2)
(X,',Xj)EM
+ Z wiifc(xi, x;) 1l = 1] (3)
(X,',Xj)EC
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Integrating constraints and metric learning

(N willa, — log(det(Ay))) (1)
x;€X
+ Y wyfu(x, )1 # 1] (2)
(X,',Xj)EM
+ Z wiifc(xi, x;) 1l = 1] (3)
(X,',Xj)EC

(1) results in the learning of the diagonal matrix A.
(2) is the penalty cost of violating the MUST-LINK constraints.
(3) is the penalty cost of violating the CANNOT-LINK constraints.
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The Metric Pairwise-Constrained K-Means (MPCK-Means)

algorithm

Integrating constraints and metric learning

(N willa, — log(det(Ay))) (1)
x;€X
+ Y wyfu(x, )1 # 1] (2)
(X,',Xj)EM
+ Z wiifc(xi, x;) 1l = 1] (3)
(X,',Xj)EC

(1) results in the learning of the diagonal matrix A.
(2) is the penalty cost of violating the MUST-LINK constraints.
(3) is the penalty cost of violating the CANNOT-LINK constraints.

o Severity of M: fiy = 1||x; — Xj”i,{ + 3xi — XJ'HE\/J.
e Severity of C: fiy = |[x; — x/'|I5, + lIxi — x[|%, . where x| and x]' is
the maximally separated pair oflpoints in the dataset.
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Density K-Means++ (DKM+-+

Nidheesh, N., KA Abdul Nazeer, and P. M. Ameer. " An enhanced deterministic K-Means clustering algorithm for cancer
subtype prediction from gene expression data.” Computers in biology and medicine 91 (2017): 213-221.



The Density K-Means++ (DKM++-) algorithm

Minimum spanning tree
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The Density K-Means++ (DKM++-) algorithm

Minimum spanning tree

e Subset of the edges that connects all the vertices together without
any cycle and with the minimum weight.
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The Density K-Means++ (DKM++-) algorithm

Minimum spanning tree
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The Density K-Means++ (DKM++-) algorithm

Radius using MST-Heuristic

€ = 3% IQR(L) + 75 percentile(L), +
L = MST weights (lengths) +
+
+
+
max-+ —‘7
754
median +
254
min+ J_
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The Density K-Means++ (DKM++-) algorithm

Local density

e Find the € — neighbors(x;).
e Compute the local density

o= Y eplml

€
y€e—neighbors(x;)

momom
non
w N
(5]

p(x;)
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The Density K-Means++ (DKM++-) algorithm

Prospectiveness

€ +— {max(p(x))}.

#(x;) = p(xj) * [|Xj — Xml||, Xm is the nearest data point added in C.

C «— {max(p(x)), max(¢(x))}

Repeat least 2 steps until k centroids are picked.
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The Density K-Means++ (DKM++-) algorithm
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The Density K-Means++ (DKM++-) algorithm
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