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Behavioural experiments
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Behavioural experiments

•• Collect trajectory/path data.

•• Compute various performance
measurements.

•• Quantify behavioural
differences.

•• Machine learning
frameworks.

•• Capture behavioural
differences to a greater
degree.

•• Limited to specific experiments.
•• Require meta-parameter tuning.
•• Crucial behavioural information

might be lost.
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The Morris Water Maze

•• Dalm, S., Grootendorst, J., De
Kloet, E. R. (2000).

•• Wolfer, D. P. & Lipp, H.-P.
(2000).

•• Wolfer, D. P., Madani, R.,
Valenti, P. & Lipp, H.-P. (2001).

•• Graziano, A., Petrosini, L. &
Bartoletti, A. (2003)

•• Illouz, T., Madar, R., Louzon,
Y., Griffioen, K. J. & Okun, E.
(2016).

•• Rogers, Jake, et al. (2017).
•• Higaki, Akinori, et al. (2018).

Avgoustinos Vouros Machine learning methods for path analysis in behavioural neuroscience 4 / 16



The Morris Water Maze

Gehring, T. V., Luksys, G., Sandi, C.,
& Vasilaki, E. (2015).

Vouros, A., Gehring, T. V.,
Szydlowska, K., Janusz, A., Tu, Z.,
Croucher, M., ... & Vasilaki, E.
(2018)
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RODA collaborations

Vouros, A., Gehring, T. V., Szydlowska, K., Janusz, A., Tu, Z., Croucher, M., ... & Vasilaki, E. (2018). A generalised
framework for detailed classification of swimming paths inside the Morris Water Maze. Scientific reports, 8(1), 15089.
Huzard, D., Vouros, A., Monari, S., Astori, S., Vasilaki, E., & Sandi, C. (2019). Constitutive differences in glucocorticoid
responsiveness are related to divergent spatial information processing abilities. bioRxiv, 579508. Accepted @ Journal of Stress.
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Unsupervised detection of behavioural motifs
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Unsupervised detection of behavioural motifs

Gehring, T. V., Luksys, G., Sandi, C., & Vasilaki, E. (2015). Detailed classification of swimming paths in the Morris Water
Maze: multiple strategies within one trial. Scientific reports, 5, 14562.
Vouros, A., Gehring, T. V., Szydlowska, K., Janusz, A., Tu, Z., Croucher, M., ... & Vasilaki, E. (2018). A generalised
framework for detailed classification of swimming paths inside the Morris Water Maze. Scientific reports, 8(1), 15089.
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Unsupervised detection of behavioural motifs

Chhabria, K., Vouros, A., Gray, C., MacDonald, R. B., Jiang, Z., Wilkinson, R. N., ... & Chico, T. (2019). Sodium nitroprusside
prevents the detrimental effects of glucose on the neurovascular unit and behaviour in zebrafish. bioRxiv, 576942.
Corrections @ Journal of Physiology.
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Unsupervised detection of behavioural motifs
The K-Means Algorithm (Lloyd’s)

Advantages:

•• Simple and easy to implement.

•• Versatile.

•• Guaranteed to converge.

•• Invariant to data ordering.

Disadvantages:
•• Detects only spherical and

well-separated clusters.
•• Sensitive to noise and outliers

(Euclidean).
•• Converges to a local minimum.

In general:
•• Non-deterministic.
•• Sensitive to initial centroids location.
•• Sensitive to features (variables/attributes).

Celebi, M. Emre, Hassan A. Kingravi, and Patricio A. Vela. “A comparative study of efficient initialization methods for the
k-means clustering algorithm.” Expert systems with applications 40.1 (2013): 200-210.
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Current work

•• Initialization: DK-Means++ [1] or D-ROBIN [2,3] method. Make
K-Means deterministic.

•• Feature selection and assessment: Sparse K-Means [4]. Select
informative features; weight them based on their clustering contribution.

•• Automatic tuning: Data driven meta-parameters tuning.

[1] Nidheesh, N., KA Abdul Nazeer, and P. M. Ameer. ”An enhanced deterministic K-Means clustering algorithm for cancer
subtype prediction from gene expression data.” Computers in biology and medicine 91 (2017): 213-221.
[2] Al Hasan, Mohammad, et al. ”Robust partitional clustering by outlier and density insensitive seeding.” Pattern
Recognition Letters 30.11 (2009): 994-1002.
[3] Vouros, A., et al, Manuscript under preparation.

[4] Witten, Daniela M., and Robert Tibshirani. “A framework for feature selection in clustering.” Journal of the American
Statistical Association 105.490 (2010): 713-726.
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Future research
Active Allothetic Place Avoidance task:
The effects of silver nanoparticles on learning and memory.

•• Detect and categorize animal
behavioural motifs.

•• Link behavioural motifs to
different stages of learning and
memory.

•• Detect the dominant features of
each motif.

Gehring, Tiago V., et al. “Analysis of behaviour in the Active Allothetic Place Avoidance task based on cluster analysis of the
rat movement motifs.” bioRxiv (2017): 157859.
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Thank you for your attention!


